報告人𓀈:Dr. Surisa Suwannarangsee, 泰國國家遺傳工程與生物技術中心(BIOTEC)
報告時間🧑🏿🎤:3月19日下午14:00-15:30
報告地點🔨:EON体育4平台3號樓105
聯系人👛🍟:趙心清(xqzhao@sjtu.edu.cn)13818485314
報告摘要🚮:
One of major impediments for commercialization of sugar-based biorefinery products is the low hydrolysis rate and the cost of enzyme used in the enzymatic saccharification process. To overcome these limitations, development of a powerful enzyme system that can efficiently convert cellulose and hemicelluloses into sugars should be addressed. In this study, an active synergistic enzyme system for hydrolysis of alkali-pretreated rice straw was optimized based on synergy of crude native fungal enzymes produced from Aspergillus aculeatus to a commercial Trichoderma reesei cellulase. Then, the biomass-degrading enzyme production from A. aculeatus by solid state fermentation and submerged fermentation was optimized by using experimental design approach. This work demonstrates potentially economical production of A. aculeatus multi-enzyme for on-site enzyme production and showed the great opportunity for application of this multi-enzyme in biomass saccharification process for biorefinery industry. Moreover, a process so-called consolidated bioprocessing (CBP) currently becomes a promising breakthrough in low-cost processing of cellulosic biomass in which cellulase and hemicellulase production, enzymatic saccharification, and ethanol fermentation are consolidated into a single process step. Such process is critical to the development of industrial production of ethanol from lignocellulosic biomass. Cell surface display systems and techniques, essential for building up CBP-enabling microorganisms have been developed in the last decade. To establish novel cell surface display system with comparable or better capability comparing with the existing system, the identifying, engineering, and validating the novel anchor proteins is indispensable. Here, based on the combining Bioinformatics and Biotechnology approaches, we have successfully identified novel anchoring motifs that showed superior display efficiency to the existing anchoring protein. These novel anchoring motifs can be applied for construction of whole-cell biocatalyst in the future.
報告人簡介:
Surisa Suwannarangsee博士專業2007年在泰國著名的朱拉隆功大學獲得博士學位,是泰國國家遺傳工程與生物技術中心資深研究員🎃,工作於生化技術與生物煉製研究小組📪,主要研究方向為生物煉製酶製劑開發🕺🏿,酵母表面展示,生物過程優化等💉,在木質纖維素生物煉製酶研究方向具有豐富的經驗。